Abstract

O-R-polyHbA(0) is an intra- and intermolecularly O-raffinose cross-linked derivative of deoxygenated human haemoglobin developed as an oxygen therapeutic. When compared with its native protein (HbA(0)), O-R-polyHbA(0) was found to be locked in the T (tense) quaternary conformation with a lower oxygen affinity, a reduced Bohr effect (50% of HbA(0)) and no measurable cooperativity (h=1). The kinetics of oxygen and CO binding to the protein indicate lower 'on' rates and faster 'off' rates than HbA(0) and the absence of effects of inositol hexaphosphate (IHP) on the kinetics. Other properties consistent with a T-like conformation are inaccessibility of the betaCys-93 thiol group of O-R-polyHbA(0), the hyperfine splitting from nitrogen in the EPR spectrum of the Fe(II)NO complex of O-R-polyHbA(0) and decreased flexibility in the distal haem pocket, as indicated by low-spin bis-histidine complexes detected by EPR of oxidized chains. A comparison of the properties of O-R-polyHbA(0) with those of HbA(0) with and without IHP, as well as the reaction of nitrite with deoxygenated haemoglobin, provide additional insights into the variations in the conformation of T-state haemoglobin in solution (modifications of the T state produced by adding organic phosphates, like IHP and 2,3-diphosphoglycerate). Although the physiological ramifications of locking HbA(0) in the T conformation with the O-raffinose are still unknown, valuable insights into haemoglobin function are provided by these studies of O-R-polyHbA(0).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.