Abstract

With increasing age, dynamic tissues such as lungs, blood vessels and skin lose their ability to both deform and recoil, culminating in tissue stiffening. This loss of tissue elasticity, which profoundly impacts tissue function and thus morbidity, may be due not only to changes in the relative abundance of key extracellular matrix proteins within tissues but also to their accumulation of post-translational modifications. Whilst to date attention has focussed primarily on the age-related non-enzymatic formation of advanced glycation end products, the accumulation of pathological enzyme-mediated cross-links may also lead to age-related tissue stiffening. The lysyl oxidase (LOX) family of enzymes are constitutively expressed in adult tissues and are known to drive the catalysis of cross-links in both fibrillar collagens and elastin. Although immunochemical approaches are commonly used to localise the inactive pro-enzyme of LOX, and biochemical methods are employed to quantify activity in homogenised tissue, they do not allow for the in situ localisation of the enzyme. Thus, we have developed a novel assay to both detect and localise LOX enzyme activity in situ. LOX family members are amine oxidases and this assay uses the principle that an amine substrate in the presence of this class of enzyme will be oxidised to an aldehyde and hydrogen peroxide (H2O2). In turn, H2O2, when combined with luminol and horseradish peroxidase, will produce a light-emitting reaction that can be detected by film autoradiography. The development of a technique to localise specific amine oxidase activity in tissue sections may provide crucial additional information on the exact role played by this class of enzymes in mediating age-related tissue stiffening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call