Abstract
Protein crystallography has proven to be an effective method of obtaining high-resolution structures of protein-ligand complexes. However, in certain cases only apoprotein structures are readily available and the generation of crystal complexes is more problematic. Some crystallographic systems are not amenable to soaking of ligands owing to crystal-packing effects and many protein-ligand complexes do not crystallize under the same conditions as used for the apoprotein. Using crystals of human phosphodiesterase 10a (hPDE10a) as an example of such a challenging crystallographic system, the structure of the complex with papaverine was obtained to 2.8 A resolution using protein crystals cross-linked by glutaraldehyde prior to soaking of the ligand. Inspection of the electron-density maps suggested that the correct mode of binding was obtained in one of the two monomers in the asymmetric unit and inspection of crystal-packing contacts explained why cocrystallization experiments and soaking of crystals that were not cross-linked were unsuccessful.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section D Biological Crystallography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.