Abstract

Poly(butylene terephthalate) (PBT) vitrimers were prepared by reactive extrusion from industrial PBT thermoplastics using Zn(II)-catalyzed addition and transesterification chemistry. PBT thermoplastics are characterized by a high degree of crystallinity, high melting temperature, and high crystallization rate, but right above their melting temperature their mechanical resistance disappears and they show a tendency to drip. We compared −OH and −COOH end-group additions on epoxies in the presence of two different catalysts: 2-methylimidazole (2-MI) and zinc acetylacetonate (Zn(acac)2). With 2-MI, chain extension reactions were efficiently catalyzed in a few minutes at 270 °C, but no gelation was observed. With Zn(acac)2, −COOH addition and transesterification led to efficient cross-linking within a few minutes at 270 °C. Such cross-linked material combines the crystalline properties of PBT and dimensional stability above the melting temperature. PBT materials cross-linked through epoxy-vitrimer chemistry ar...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.