Abstract

Rhodopsin is the photoreceptor protein involved in visual excitation in retinal rods. The functionality of bovine rhodopsin was determined following treatment with sulfosuccinimidyl 4-(N maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC), a bifunctional reagent capable of forming covalent cross-links between suitable placed lysines and cysteines. Denaturing polyacrylamide gel electrophoresis showed that rhodopsin incubated with sulfo-SMCC generated intermolecular dimers, trimers, and higher oligomers, although most of the sulfo-SMCC-treated protein remained as a monomer. Minor alterations on the absorption spectrum of light-activated sulfo-SMCC-treated rhodopsin were observed. However, only ∼2% stimulation of the guanine nucleotide binding activity of transducin was measured in the presence of sulfo-SMCC-cross-linked photolyzed rhodopsin. Moreover, rhodopsin kinase was not able of phosphorylating sulfo-SMCC-cross-linked rhodopsin after illumination. Rhodopsin was purified in the presence of either 0.1% or 1% n-dodecyl β-d-maltoside, to obtain dimeric and monomeric forms of the protein, respectively. Interestingly, no generation of the regular F1 and F2 thermolytic fragments was perceived with sulfo-SMCC-cross-linked rhodopsin either in the dimeric or monomeric state, implying the formation of intramolecular connections in the protein that might thwart the light-induced conformational changes required for interaction with transducin and rhodopsin kinase. Structural analysis of the rhodopsin three-dimensional structure suggested that the following lysine and cysteine pairs: Lys66/Lys67 and Cys316, Cys140 and Lys141, Cys140 and Lys248, Lys311 and Cys316, and/or Cys316 and Lys325 are potential candidates to generate intramolecular cross-links in the protein. Yet, the lack of fragmentation of sulfo-SMCC-treated Rho with thermolysin is consistent with the formation of cross-linking bridges between Lys66/Lys67 and Cys316, and/or Cys140 and Lys248.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.