Abstract

Binding sites for 125I-atrial natriuretic peptide (ANP)2 in rat olfactory bulb membranes have been studied using pharmacological and biochemical methods. Various unlabeled ANP-related peptides were tested for the ability to inhibit the binding of the radioligand in membrane binding assays. ANP(92-126) and ANP(99-126) were the most potent inhibitors tested, both exhibiting an IC50 value of 0.40 nM. ANP(103-126) and ANP(103-123) were 3 and 70 times less potent, respectively. ANP(111-126) was unable to inhibit the binding of the radioligand at a concentration of 1 microM. Several peptides unrelated to ANP were unable to inhibit the binding of the radioligand to rat olfactory bulb membranes. Membranes labeled with 125I-ANP were incubated with cross-linking agents and subjected to SDS-PAGE followed by autoradiography. A band possessing an apparent molecular mass of 116 kDa was identified. The labeling of this band was progressively decreased by increasing concentrations of unlabeled ANP(99-126) (IC50 = 0.6 nM) and by several other ANP-related peptides at nanomolar concentrations. For comparison purposes, ANP binding sites in rat aorta membranes were labeled with 125I-ANP and cross-linked using identical techniques. Three bands possessing molecular masses of 120, 72, and 62 kDa were identified. These results indicate that the ANP binding site in rat olfactory bulb membranes displays pharmacological and biochemical properties similar to peripheral ANP receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.