Abstract

A hemocompatible, antimicrobial 3,4en-ionene (PBI) derived by polyaddition of trans-1,4-dibromo-2-butene and N,N,N',N'-tetramethyl-1,3-propanediamine was cross-linked via its bromine end groups using tris(2-aminoethyl)amine (TREN) to form a fast-swelling, antimicrobial superabsorber. This superabsorber is taking up the 30-fold of its weight in 60 s and the granulated material is taking up 96-fold of its weight forming a hydrogel. It fully prevents growth of the bacterium Staphylococcus aureus. The PBI network was swollen with 2-hydroxyethyl acrylate and glycerol dimethacrylate followed by photopolymerization to form an interpenetrating hydrogel (IPH) with varying PBI content in the range of 2.0 to 7.8 wt %. The nanophasic structure of the IPH was confirmed by atomic force microscopy and transmission electron microscopy. The bacterial cells of the nosocomial strains Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa are killed on the IPH even at the lowest PBI concentration. The antimicrobial activity was retained after washing the hydrogels for up to 4 weeks. The IPHs show minor leaching of PBI far below its antimicrobial active concentration using a new quantitative test for PBI detection in solution. This leaching was shown to be insufficient to form an inhibition zone and killing bacterial cells in the surroundings of the IPH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.