Abstract
Waterborne alkyd resin coatings are ideal for use as corrosion protection coatings because of its high cost‐effective and environmental advantages. However, their uses are restricted to general applications due to their poor acid, water, and alkali resistance. In this work, waterborne alkyd hybrid resins modified with fluorinated acrylate‐siloxane were synthesized via a surfactant‐free miniemulsion polymerization process using maleic anhydride and silicon modified alkyd resin, dodecafluoroheptyl methacrylate, methyl methacrylate, and butyl acrylate as monomers. And then, crosslinking alkyd resin films were prepared at room temperature using trimethylolpropane‐tris‐(β‐N‐azir‐idinyl) propionate (XR‐100) as the crosslinking agent. The acquired films had lower water absorption and higher water contact angles and had better mechanical/thermal properties, as well as good waterproof property. Most importantly, the electrochemical corrosion studies revealed that the cross‐linked coating exhibited superior corrosion resistance performance with an inhibition efficiency of 99.95% and a corrosion rate of 6.95 × 10−3 mm per year.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.