Abstract
Implantable drug delivery systems, formed from degradable and non-degradable polymers, can offer several advantages over traditional dosage forms for sustained drug delivery. The majority of degradable implant systems developed to date are composed of poly(lactide-co-glycolide) (PLGA). However, PLGA-based systems are not suitable for the delivery of all drugs. Each drug is unique in terms of physico-chemical properties, and polymer-drug compatibility plays a significant role in determining a drug formulation's performance. In this study, two novel cross-linkable δ-valerolactone-based copolymers were synthesized and used to prepare cross-linked disc-shaped implants. The manipulation of the composition of the discs and conditions used during drug loading were found to influence various aspects of the delivery system performance including the degree of swelling, degradation, drug-loading and in vitro release. The polymeric discs resulted in no adverse effects following subcutaneous implantation in naïve rats. These studies support further development of cross-linkable valerolactone matrices as implantable formulations for sustained drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.