Abstract
Branched polyethylenimine (PEI; 25 kDa) as a nonviral vector exhibits high transfection efficiency and is a potential candidate for efficient gene delivery. However, the cytotoxicity of PEI limits its application in vivo. PEI was ionically interacted with hexametaphosphate, a compact molecule with high anionic charge density, to obtain nanoparticles (PEI-HMP). Nanoparticles were assessed for their efficacy in protecting complexed DNA against nucleases. The intracellular trafficking of nanoparticles was monitored by confocal microscopy. The cytotoxicity and transfection efficiency of PEI-HMP nanoparticles were evaluated in vitro. In vitro transfection efficiency of PEI-HMP (7.7%) was ∼1.3- to 6.4-folds higher than that of the commercial reagents GenePORTER 2 TM, Fugene TM, and Superfect TM. Also, PEI-HMP (7.7%) delivered green fluorescent protein (GFP)-specific small interfering ribonucleic acid (siRNA) in culture cells leading to >80% suppression in GFP gene expression. PEI-HMP nanoparticles protected complexed DNA against DNase for at least 2 hours. A time-course uptake of PEI-HMP (7.7%) nanoparticles showed the internalization of nanoparticles inside the cell nucleus in 2 hours. Thus, PEI-HMP nanoparticles efficiently transfect cells with negligible cytotoxicity and show great promise as nonviral vectors for gene delivery. From the Clinical Editor Branched polyethylenimine (PEI) as a non-viral vector exhibits high transfection efficiency for gene delivery, but its cytotoxicity limits its applications. PEI hexametaphosphate nanoparticles (PEI-HMP) demonstrated a 1.3-6.4 folds higher transfection rate compared to commercial reagents. Overall, PEI-HMP nanoparticles efficiently transfect cells with negligible cytotoxicity and show great promise as non-viral vectors for gene delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.