Abstract

Selection of hydrogels as excipients in controlled drug release systems depends on the characteristics of the gel and of the drug. Three types of derivatives were synthesized from cross-linked high amylose starch (HASCL-6) by substitution of hydroxylic groups with cationic (carboxymethyl: CM), anionic (aminoethyl: AE) and acetate (Ac) groups. These new polymeric excipients are able to control the release over 20 h from monolithic tablets loaded with 20 to 60% drug. Three drugs were used as model tracer: acetaminophen (uncharged), acetylsalicylic acid (having an acidic group) and metformin (having a basic group). It was found that the release of ionic drugs from CM-HASCL-6 and AE-HASCL-6 matrices can be partially controlled by ionic interaction between pendant groups of polymer and drugs. The substitution degree of HASCL-6 derivatives can also be varied to modulate the drug’s release time. These derivatives represent a novel generation of pharmaceutical excipients, recommended for high loading dosage formulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call