Abstract

Inspired by morphogenesis in biology, we present a strategy for developing functional 3D materials with the capacity to morph based on environmental cues. We utilized local mechanical stresses to cause global shape changes in colloidosomes. Colloidosomes were assembled from pH-sensitive calcium alginate particles (CAPs) with high and low swelling ratios. Colloidosomes were subsequently cross-linked via diamine compounds with varying carbon chain lengths. New colloidosome isoforms were generated from heterogeneous mixtures of CAPs, which resulted in nonuniform stresses. Our study demonstrated that coordinated networks of heterogeneous subunits may be used to design programmable materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.