Abstract

Radioactive iodine waste from nuclear plant became the severe environmental problem and led to the public health concern. The cross-linked chitosan adsorbed iodide anions through the electrical attraction, yet performing limited-efficiently. Targeting as the better adsorption, the modified chitosan sorbent as AgCl@CM (silver chloride entrapped in the cross-linked chitosan microspheres) for iodine adsorption was proposed and implemented by chemisorption from AgCl and physisorption from chitosan via the improved emulsion method (emulsions mixing-collision and polymerization). With the broad application from pH 2 to pH 10, the spherical AgCl@CM (from 0.20 g silver nitrate) performed the I127 anions (instead of radioactive iodine) adsorption efficiency of higher than 90 % in 20 min, with the maximum adsorption capacity of 1.5267 mmol/g, well-fitting with the pseudo-first-order model and Sips isothermal model. AgCl@CM also performed I127 adsorption with the significant selectivity relative to Cl−. The micro-spherical AgCl@CM sorbents were therefore prospective-effectively for iodine waste water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call