Abstract

This paper explores the application of cross-linked cellulose beads as a sustainable and cost-effective support for the ZnO/SnO2/carbon xerogel hybrid photocatalyst. The application of the developed photocatalytic beads, named CB-Cat, was directed at a simultaneous adsorption/photocatalysis process, which was carried out under simulated sunlight. The characterization of the CB-Cat indicated a good dispersion of the photocatalyst of choice throughout the cellulose matrix, confirming its incorporation into the cellulose beads. Furthermore, it is possible to observe the presence of the photocatalyst on the surface of the CB-Cat, confirming its availability for the photonic activation process. The results showed that the simultaneous adsorption/photocatalysis process was optimal for enhancing the efficiency of methylene blue (MB) removal, especially when compared to the isolated adsorption process. Additionally, the regeneration of the CB-Cat between cycles was favorable toward the maintenance of the MB removal efficiency, as the process carried out without regeneration displayed significant efficiency drops between cycles. Finally, the mechanism evaluation evidenced that hydroxyl and superoxide radicals were the main responsible for the MB photocatalytic degradation during illumination with simulated sunlight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.