Abstract

One of the major challenges to improving the performance of sodium-ion batteries at low temperatures is to develop effective anode materials with novel structures and fast reaction kinetics. Currently, converting electrode materials from the crystalline to amorphous state is an effective approach to fabricate the electrode material with high sodium storage performance. Herein, a three-dimensional (3D) cross-linked heterostructure with one-dimensional (1D) amorphous potassium titanate (KTiOx) nanobelts in-situ grown on two-dimensional (2D) titanium carbide (Ti2CTx) nanosheets (a-KTiOx/Ti2CTx) was fabricated through alkalization of the multilayered Ti2CTx MXene, which exhibits remarkable sodium storage performance at both room and low temperatures. The heterostructure prepared by the combination of 1D amorphous nanobelts and 2D conductive nanosheets enables efficient strain alleviation in the electrode, a high capacitive contribution to charge storage, rapid ionic diffusion kinetics, and robust electrode integrity, thus enhancing the sodium storage performance. In particular, reversible capacities of 221.9, 144.2 and 112.6 mAh/g can be achieved at 0.1 A/g after 100 cycles at 25, 0 and −25 °C, respectively. This study provides significant insights into the construction of MXene-based electrode materials for sodium storage at low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.