Abstract

ABC-type triblock copolymers are a rising platform especially for oligonucleotide delivery as they offer an additional functionality besides the anyhow needed functions of shielding and complexation. The authors present a polypept(o)ide-based triblock copolymer synthesized by amine-initiated ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), comprising a shielding block A of polysarcosine (pSar), a poly(S-ethylsulfonyl-l-cystein) (pCys(SO2 Et)) block B for bioreversible and chemo-selective cross-linking and a poly(l-lysine) (pLys) block C for complexation to construct polyion complex (PIC) micelles as vehicle for small interfering RNA (siRNA) delivery. The self-assembly behavior of ABC-type triblocks is investigated to derive correlations between block lengths of the polymer and PIC micelle structure, showing an enormous effect of the β-sheet forming pCys(SO2 Et) block. Moreover, the block enables the introduction of disulfide cross-links by reaction with multifunctional thiols to increase stability against dilution. The right content of the additional block leads to well-defined cross-linked 50-60nm PIC micelles purified from production impurities and determinable siRNA loading. These PIC micelles can deliver functional siRNA into Neuro2A and KB cells evaluated by cellular uptake and specific gene knockdown assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.