Abstract

Rendezvous in cognitive radio networks (CRNs) facilitates cognitive radio (CR) users to find common channels and establish a communication link. Due to the dynamic radio environment, rendezvous on a predetermined common control channel (CCC) is limited by a single point of failure, congestion and security. Channel hopping (CH) provides an efficient solution to achieve rendezvous in cognitive radio ad-hoc networks (CRAHNs). In this paper, a cross layer CH rendezvous protocol is proposed which use the channel preference of a CR user to establish a communication link. The channel preference of a CR user is determined by channel ranking based on PUs and CRs activities which is physical layer parameter. We formulate the channel ranking as a linear optimization problem based on the channel availability under collision constraints. Thereby, abreast of channel quantity, we integrate the channel quality to design a CH rendezvous protocol. Simulation results show that the proposed Channel ranking based channel hopping (CRCH) scheme outperforms with similar CH schemes in terms of average time-to-rendezvous (ATTR) and the degree of overlap in asymmetric channel scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call