Abstract
The development of the Industrial Internet of Things (IIoT) and digital twins (DTs) technology brings new opportunities and challenges to all walks of life. The work aims to study the cross-layer optimization of DTs in IIoT. The specific application scenarios of hazardous gas leakage boundary tracking in the industry is explored. The work proposes an industrial hazardous gas tracking algorithm based on a parallel optimization framework, establishes a three-layer network of distributed edge computing based on IIoT, and develops a two-stage industrial hazardous gas tracking algorithm based on a state transition model. The performance of different algorithms is analyzed. The results indicate that the tracking state transition and target wake-up module can effectively track the gas boundary and reduce the network energy consumption. The task success rate of the parallel optimization algorithm exceeds 0.9 in 5 s. When the number of network nodes in the state transition algorithm is N = 600, the energy consumption is only 2.11 J. The minimum tracking error is 0.31, which is at least 1.33 lower than that of the exact conditional tracking algorithm. Therefore, the three-layer network edge computing architecture proposed here has an excellent performance in industrial gas diffusion boundary tracking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.