Abstract

Cloud computing provides various diverse services for users accessing big data through high data rate cellular networks, e.g., LTE-A, IEEE 802.11ac, etc. Although LTE-A supports very high data rate, multi-hop relaying, and cooperative transmission, LTE-A suffers from high interference, path loss, high mobility, etc. Additionally, the accesses of cloud computing services need the transport layer protocols (e.g., TCP, UDP, and streaming) for achieving end-to-end transmissions. Clearly, the transmission QoS is significantly degraded when the big data transmissions are done through the TCP protocol over a high interference LTE-A environment. The issue of providing high data rate and high reliability transmissions in cloud computing needs to be addressed completely. Thus, this paper proposes a cross-layer-based adaptive TCP algorithm to gather the LTE-A network states (e.g., AMC, CQI, relay link state, available bandwidth, etc.), and then feeds the state information back to the TCP sender for accurately executing the network congestion control of TCP. As a result, by using the accurate TCP congestion window (cwnd) under a high interference LTE-A, the number of timeouts and packet losses are significantly decreased. Numerical results demonstrate that the proposed approach outperforms the compared approaches in goodput and fairness, especially in high interference environment. Especially, the goodput of the proposed approach is 139.42 % higher than that of NewReno when the wireless loss increases up to 4 %. Furthermore, the throughput and the response functions are mathematically analyzed. The analysis results can justify the claims of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.