Abstract

State measurement of a quantum harmonic oscillator is essential in quantum optics and quantum information processing. In a system of trapped ions, we experimentally demonstrate the projective measurement of the state of the ions' motional mode via an effective cross-Kerr coupling to another motional mode. This coupling is induced by the intrinsic nonlinearity of the Coulomb interaction between the ions. We spectroscopically resolve the frequency shift of the motional sideband of the first mode due to the presence of single phonons in the second mode and use it to reconstruct the phonon number distribution of the second mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.