Abstract
In this paper we propose a simple axiom which, along with the axioms of additivity (transfer) and dummy player, characterizes the Shapley value (the Shapley–Shubik power index) on the domain of TU (simple) games. The new axiom, cross invariance, demands payoff invariance on symmetric players across “quasi-symmetric games,” that is, games where excluding null players, all players are symmetric. Additionally, we demonstrate that the axiom of additivity can be replaced by a new axiom called strong monotonicity, or it can be completely dropped if a stronger version of cross invariance is employed. We also show that the weighted Shapley values can be characterized using a weighted variant of cross invariance. Efficiency is derived rather than assumed in our characterizations. This fresh perspective contributes to a deeper understanding of the Shapley value and its applicability.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.