Abstract

The operating condition effects on the cross-flow microfiltration performance of dilute macromolecular suspension were studied. Track-etched membranes of different pore sizes were used to filter blue dextran with a molecular weight of 2000 kDa. Increasing the membrane pore diameter results in higher filtration flux but decreases the dextran rejection coefficient. For filtration using 0.2-μm membrane, an increase in cross-flow velocity or filtration pressure leads to higher filtration flux, but the impact of cross-flow velocity is more significant. A membrane fouling model based on force analysis and membrane pore size reduction caused by dextran adsorption at pseudo-steady state is proposed. The effective membrane pore diameter and pseudo-steady filtration flux under various conditions can then be estimated. On the other hand, the pseudo-steady dextran rejection coefficient increases with increasing cross-flow velocity or decreasing filtration pressure when cross-flow velocity is lower than 0.3 m/s. This can be reasonably explained by the sweeping effect of tangential flow or using the modified gel-polarization model. However, a contrary trend occurs under the conditions with higher cross-flow velocity. This result is attributed to the dextran molecular deformation. The “coil-stretched” deformation of blue dextran molecules can be indicated using the Reynolds number in the permeating flow direction or Deborah number for macromolecular flow through porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.