Abstract

This paper presents a combined experimental and theoretical study on the thermal–hydraulic performance of a novel type of periodic textile cellular structure, subjected to forced convection using both air and water as a coolant. The samples were fabricated as sandwich panels, with the textile cores bonded to two solid face-sheets using a brazing alloy. These efficient load supporting sandwich structures can also be used for active cooling. The effects of cell topology, pore fraction and material properties (high thermal conductivity copper or low thermal conductivity stainless steel) on both coolants flow resistance and heat transfer rate were measured. The flow friction factor is found to depend mainly on the open area ratio in the flow direction (which is dependent upon cell topology and pore fraction), whilst the amount of heat transferred is dependent upon solid conductivity, pore fraction and surface area density. Analytical models were used to develop predictive relations between both the pressure loss and heat transfer performance for different textile geometries. Good agreement between the predictions and measurements were obtained. Due to high thermal capacity of water, it was found that the model for water cooling must account for the additional contribution due to thermal dispersion. The dispersion conductivity was found to be related to coolant property, local flow velocity, wire diameter and pore fraction. Finally, the thermal performance of brazed woven textiles is compared with other heat exchanger media, such as open-celled metallic foams and louvered fins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.