Abstract

Microsimulation techniques for disaggregate activity-based travel demand models are expected to synthesize a desired number of fully specified individual activity patterns. A data prerequisite for this technique is the so-called synthetic population, a key input for activity-generating procedures. The iterative proportional fitting method has been widely used to estimate the multiway demographic tables for different geographic areas. This study proposed a cross-entropy optimization model in which generalized constraints for different demographic characteristics of the synthetic population could be included. A quasi-Newton algorithm was devised to solve the proposed problem. Encouraging results obtained from the model application suggested that the proposed method held much promise for generating a more realistic synthetic population with different types of demographic characteristics and could be generally applied in different geographic areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.