Abstract
The key question in transfer learning (TL) research is how to make model induction transferable across different domains. Common methods so far require source and target domains to have a shared/homogeneous feature space, or the projection of features from heterogeneous domains onto a shared space. This paper proposes a novel framework, which does not require a shared feature space but instead uses a parallel corpus to calibrate domain-specific kernels into a unified kernel, to leverage graph-based label propagation in cross-domain settings, and to optimize semi-supervised learning based on labeled and unlabeled data in both source and target domains. Our experiments on benchmark datasets show advantageous performance of the proposed method over that of other state-of-the-art TL methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.