Abstract

Conventional classification models for epileptic EEG signal recognition need sufficient labeled samples as training dataset. In addition, when training and testing EEG signal samples are collected from different distributions, for example, due to differences in patient groups or acquisition devices, such methods generally cannot perform well. In this paper, a cross-domain classification model with knowledge utilization maximization called CDC-KUM is presented, which takes advantage of the data global structure provided by the labeled samples in the related domain and unlabeled samples in the current domain. Through mapping the data into kernel space, the pairwise constraint regularization term is combined together the predictive differences of the labeled data in the source domain. Meanwhile, the soft clustering regularization term using quadratic weights and Gini-Simpson diversity is applied to exploit the distribution information of unlabeled data in the target domain. Experimental results show that CDC-KUM model outperformed several traditional non-transfer and transfer classification methods for recognition of epileptic EEG signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.