Abstract

The oxidative cross-coupling of sulfonamide antimicrobials to constituents of natural organic matter was investigated. Sulfonamide antimicrobials were incubated with surrogate humic constituents in the absence and presence of phenoloxidases (viz., peroxidase, laccase, and tyrosinase) or acid birnessite. Substituted phenols were chosen as simple model constituents to determine the structures in humic substances important for cross-coupling reactions. The extent of sulfonamide transformation was evaluated by the disappearance of the parent compound from solution. Incubation with phenoloxidases in the absence of substituted phenols resulted in little or no sulfonamide transformation. In contrast to this, direct oxidation of sulfonamides by acid birnessite was significant. Inclusion of o-diphenols and 2,6-dimethoxyphenols in reaction mixtures resulted in significant phenoloxidase-mediated transformation of sulfonamides and enhanced antimicrobial transformation in the presence of acid birnessite. Phenolic compounds with other substitution patterns were less effective in promoting sulfonamide transformation. Nuclear magnetic resonance spectroscopy experiments provided direct evidence of peroxidase-mediated covalent cross-coupling of sulfamethazine with syringic and protocatechuic acids. Our results indicate that sulfonamide antimicrobials may be chemically incorporated into humic substances. This may result in their diminished mobility, bioavailability, and biological activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call