Abstract

We theoretically investigate the spin and charge transport properties of a double quantum dot coupled to distinct edges of the nanowire hosting Majorana zero-energy modes. The focus is on the analysis of the currents flowing through the left and right junctions and their cross-correlations. We show that the system reveals very different transport properties depending on the detuning protocol of the quantum dot energy levels. For the symmetric detuning, the current dependencies reveal only two maxima associated with resonant tunneling, and currents in the left and right arms of the system reveal weak positive cross-correlations. On the other hand, for antisymmetric detuning, the flow of electrons into drains is maximized and strongly correlated in one bias voltage direction, while for the opposite bias direction a spin blockade is predicted. Furthermore, we observe a suppression of the current cross-correlations at a highly symmetric detuning point, indicating the involvement of the Majorana zero-energy modes in the transport processes. To gain insight into the role of the spin polarization of the Majorana edge states, we analyze the spin-dependent transport characteristics by considering the relationship between the spin canting angle, which describes the coupling of the Majorana modes to the spin of the quantum dots, and the magnetic configurations of the ferromagnetic drains. Moreover, we examine the non-local zero bias anomaly in the differential conductance, detailed analysis of which revealed a specific operational mode of the device that can facilitate the identification of the Majorana presence in the quantum dot-Majorana wire system. Finally, we also consider the transport properties in different magnetic configurations of the system and discuss the behavior of the associated tunnel magnetoresistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call