Abstract

Relaxation measurements of side-chain 13CH2-groups of uniformly 13C labeled human ubiquitin were performed at 600 MHz and 800 MHz magnetic field strength at 30 degrees C. Dipole-dipole cross-correlated relaxation effects in T1 experiments were suppressed by the combination of radio-frequency pulses and pulsed field gradients during the relaxation delay leading to monoexponential relaxation decays that allow a more accurate extraction of the 13C T1 relaxation times. Heteronuclear [1H]-13C NOEs obtained by using different proton saturation schemes indicate that the influence of cross-correlation is small. The experimental T1 and NOE data were interpreted in a model-free way in terms of a generalized order parameter and an internal correlation time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.