Abstract
Cross-connection theory provides the construction of a semigroup from its ideal structure using small categories. A concordant semigroup is an idempotent-connected abundant semigroup whose idempotents generate a regular subsemigroup. We characterize the categories arising from the generalized Green relations in the concordant semigroup as consistent categories and describe their interrelationship using cross-connections. Conversely, given a pair of cross-connected consistent categories, we build a concordant semigroup. We use this correspondence to prove a category equivalence between the category of concordant semigroups and the category of cross-connected consistent categories. In the process, we illustrate how our construction is a generalization of the cross-connection analysis of regular semigroups. We also identify the inductive cancellative category associated with a pair of cross-connected consistent categories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.