Abstract

Remote sensing applications of change detection are increasingly in demand for many areas of land use and urbanization, and disaster risk reduction. The Sendai Framework for Disaster Risk Reduction and the New Urban Agenda by the United Nations call for risk monitoring. This study maps and assesses the urban area changes of 23 Mexican-USA border cities with a remote sensing-based approach. A literature study on existing studies on hazard mapping and social vulnerability in those cities reveals a need for further studies on urban growth. Using a multi-modal combination of aerial, declassified (CORONA, GAMBIT, HEXAGON programs), and recent (Sentinel-2) satellite imagery, this study expands existing land cover change assessments by capturing urban growth back to the 1940s. A Geographic Information System and census data assessment results reveal that massive urban growth has occurred on both sides of the national border. On the Mexican side, population and area growth exceeds the US cities in many cases. In addition, flood hazard exposure has grown along with growing city sizes, despite structural river training. These findings indicate a need for more risk monitoring that includes remote sensing data. It has socio-economic implications, too, as the social vulnerability on Mexican and US sides differ. This study calls for the maintenance and expansion of open data repositories to enable such transboundary risk comparisons. Common vulnerability variable sets could be helpful to enable better comparisons as well as comparable flood zonation mapping techniques. To enable risk monitoring, basic data such as urban boundaries should be mapped per decade and provided on open data platforms in GIS formats and not just in map viewers.

Highlights

  • The call for monitoring urban growth and monitoring disaster risk led to a series of strategies in urban development and disaster risk reduction [1,2]

  • This article aims at analyzing urban growth and its dynamics along cross-border cities as a starting point to understand and document natural hazard exposure growth

  • Since mapping and data precision is relatively coarse, the results in numbers are instead useful for a relative, not exact comparison. They display ways to derive hazard, exposure, and vulnerability indicators that are in demand in disaster risk studies [81,86,88]. This may be used for monitoring at a cross-regional level by institutions such as the UN or others interested in transboundary disaster risk management [2,89,90,91]

Read more

Summary

Objectives

This article aims at analyzing urban growth and its dynamics along cross-border cities as a starting point to understand and document natural hazard exposure growth

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call