Abstract

The response of the cross-beam energy transfer instability (CBET) to laser bandwidth is investigated through a combination of theory and simulation. Existing linear theory is generalized to treat broadband lasers, demonstrating that CBET is most effectively suppressed when the bandwidth exceeds the ion-acoustic wave (IAW) frequency. It is shown that for such bandwidths, reverse (seed to pump) transfer becomes possible, which reduces the net energy transfer rapidly as bandwidth is increased. The CBET gain exponent in this regime scales with bandwidth (Δω) as Δω−3 for Gaussian or Lorentzian laser spectra with different scalings possible for other spectra. Comparison of our theory with linearized fluid and particle-in-cell simulations, performed with the laser-plasma simulation environment (LPSE) and vector particle in cell (VPIC) codes, respectively, finds that the model is accurate in the absence of nonlinear processes. However, linear analysis also finds that the IAW energy density scales as Δω−1, implying that nonlinear effects may be more difficult to control than the CBET scaling would suggest. Indeed, nonlinear effects are found to be present in VPIC simulations with high-intensity lasers, despite minimal apparent CBET. Nonlinear processes in the VPIC cases include particle trapping, the two-ion wave decay, and ion wave self-focusing. In some high intensity VPIC cases, these effects lead to net energy transfer from seed to pump and increases to backscatter stimulated Brillouin scattering reflectivities. Finally, for a given bandwidth, we show that improved control of nonlinear processes can be achieved via smoothing by spectral dispersion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call