Abstract

BackgroundAnesthetics dose-dependently shift electroencephalographic (EEG) activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks. Additionally, they uncouple brain areas in higher (gamma) frequency ranges possibly underlying conscious perception. It is currently thought that both effects may impair brain function by impeding proper information exchange between cortical areas. But what happens at the local network level? Local networks with strong excitatory interconnections may be more resilient towards global changes in brain rhythms, but depend heavily on locally projecting, inhibitory interneurons. As anesthetics bias cortical networks towards inhibition, we hypothesized that they may cause excessive synchrony and compromise information processing already on a small spatial scale. Using a recently introduced measure of signal independence, cross-approximate entropy (XApEn), we investigated to what degree anesthetics synchronized local cortical network activity. We recorded local field potentials (LFP) from the somatosensory cortex of three rats chronically implanted with multielectrode arrays and compared activity patterns under control (awake state) with those at increasing concentrations of isoflurane, enflurane and halothane.ResultsCortical LFP signals were more synchronous, as expressed by XApEn, in the presence of anesthetics. Specifically, XApEn was a monotonously declining function of anesthetic concentration. Isoflurane and enflurane were indistinguishable; at a concentration of 1 MAC (the minimum alveolar concentration required to suppress movement in response to noxious stimuli in 50% of subjects) both volatile agents reduced XApEn by about 70%, whereas halothane was less potent (50% reduction).ConclusionsThe results suggest that anesthetics strongly diminish the independence of operation of local cortical neuronal populations, and that the quantification of these effects in terms of XApEn has a similar discriminatory power as changes of spontaneous action potential rates. Thus, XApEn of field potentials recorded from local cortical networks provides valuable information on the anesthetic state of the brain.

Highlights

  • Anesthetics dose-dependently shift electroencephalographic (EEG) activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks

  • It has long been known that anesthetics alter neuronal activity of the brain, yet it is still unclear which of the alterations of brain activity are instrumental in causing sedation, amnesia and unconsciousness

  • A complementary insight into network effects of anesthetics was recently provided by Hudetz and colleagues, who demonstrated that in rats volatile anesthetics diminished the independence of spontaneous electroencephalographic (EEG) signals recorded from different hemispheres [10]: isoflurane, and halothane above 0.4%, reduced cross-approximate entropy (XApEn), a nonlinear information statistical parameter which quantifies the independence of signals

Read more

Summary

Introduction

Anesthetics dose-dependently shift electroencephalographic (EEG) activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks. They uncouple brain areas in higher (gamma) frequency ranges possibly underlying conscious perception. Cholinergic stimulation reversed the isoflurane-induced decrease of XApEn [11] These findings suggest that anesthetics induce changes of thalamocortical networks and slow predominant frequencies. This impairs brain function by promoting uniformity of signals and impeding an exchange of independent information between cortical areas, as a contrast to the transient synchronization of fast oscillations which has been suggested as the mechanism underlying conscious perception [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call