Abstract

In 1974 Cruse gave necessary and sufficient conditions for an r × s partial latin square P on symbols σ1,σ2,…,σt, which may have some unfilled cells, to be completable to an n × n latin square on symbols σ1,σ2,…,σn, subject to the condition that the unfilled cells of P must be filled with symbols chosen from {σt + 1,σt + 2,…,σn}. These conditions consisted of r + s + t + 1 inequalities. Hall's condition applied to partial latin squares is a necessary condition for their completion, and is a generalization of, and in the spirit of Hall's Condition for a system of distinct representatives. Cropper asked whether Hall's Condition might also be sufficient for the completion of partial latin squares, but we give here a counterexample to Cropper's speculation. We also show that the r + s + t + 1 inequalities of Cruse's Theorem may be replaced by just four inequalities, two of which are Hall inequalities for P (i.e. two of the inequalities which constitute Hall's Condition for P), and the other two are Hall inequalities for the conjugates of P. © 2011 Wiley Periodicals, Inc. J Combin Designs 19:268-279, 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.