Abstract
The main objective of this research is to predict crop yields based on cultivation area, Rainfall and maximum and minimum temperature data. It will help our Indian farmers to predict crop yielding according to the environment conditions. Nowadays, Machine learning based crop yield prediction is very popular than the traditional models because of its accuracy. In this paper, linear regression, Support Vector Regression, Decision Tree and Random forest is compared with XG Boost algorithm. The above mentioned algorithms are compared based on R2, Minimum Square Error and Minimum Absolute Error. The dataset is prepared from the data.gov.in site for the year from 2000 to 2014. The data for 4 south Indian states Andhra Pradesh, Karnataka, Tamil Nadu and Kerala data alone is taken since all these states has same climatic conditions. The proposed model in this paper based on XG Boost is showing much better results than other models. In XG Boost R2 is 0.9391 which is the best when compared with other models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.