Abstract

Reliable prediction for crop yield is crucial for economic planning, food security monitoring, and agricultural risk management. This study aims to develop a crop yield forecasting model at large spatial scales using meteorological variables closely related to crop growth. The influence of climate patterns on agricultural productivity can be spatially inhomogeneous due to local soil and environmental conditions. We propose a Bayesian spatially varying functional model (BSVFM) to predict county-level corn yield for five Midwestern states, based on annual precipitation and daily maximum and minimum temperature trajectories modeled as multivariate functional predictors. The proposed model accommodates spatial correlation and measurement errors of functional predictors, and respects the spatially heterogeneous relationship between the response and associated predictors by allowing the functional coefficients to vary over space. The model also incorporates a Bayesian variable selection device to further expand its capacity to accommodate spatial heterogeneity. The proposed method is demonstrated to outperform other highly competitive methods in corn yield prediction, owing to the flexibility of allowing spatial heterogeneity with spatially varying coefficients in our model. Our study provides further insights into understanding the impact of climate change on crop yield. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.