Abstract

AbstractThe study was conducted to determine the feasibility of canopy temperature based crop water stress index (CWSI) for scheduling irrigation of Indian mustard (Brassica juncea). Field crop experiments were conducted in Hamirpur, Himachal Pradesh (India) during three consecutive cropping seasons (2015, 2016 and 2017). The experimental field was divided into five plots with different levels of irrigation treatments based on depletion of total available soil water (TASW) in the crop root zone. The maximum soil moisture depletion (SMD) of TASW at 10%, 30% and 50%, full irrigated (non‐stressed) and extremely dry (full stressed) conditions were maintained in respective plots. Relationships were developed between canopy‐air temperature differential (TC‐TA) and vapour pressure deficit (VPD) for non‐stressed and fully stressed conditions to generate non‐water‐stressed baseline (NWSB) and maximum water‐stressed baseline (MWSB) baselines for Indian mustard crop. The CWSI was computed for different SMD of TASW by using a proven empirical approach based on the baselines. The irrigation treatment corresponding to 30% SMD with a mean CWSI of 0.4 resulted in optimal yield and maximum water use efficiency. Results of the study suggest that established CWSI value can be used to detect stress and schedule irrigations for Indian mustard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.