Abstract
The crop water stress index (CWSI), an index derived from canopy temperature, has been widely studied as a physiological indicator of plant water status to optimize irrigation in common beans. However, it is not clear how this index could contribute to yield prediction as a decision support tool in irrigation management. This paper aimed to use the CWSI for predicting yield loss in common bean (Phaseolus vulgaris L.) subjected to water stress under drip irrigation. A rain shelter experiment was conducted using a completely randomized design with five replications. The indeterminate growth cultivar TAA Dama was subjected to three irrigation treatments: 100% of the field capacity (FC), 75 and 50% FC from 20 days after sowing (DAS) until the end of the crop cycle. Grain yield was reduced by 42% under 50% FC treatment. Furthermore, stomatal conductance was reduced under this treatment, whereas the CWSI and canopy temperature increased as irrigation levels decreased. The relationship between grain yield and CWSI (R2=0.76, RSME=2.35g) suggests that canopy temperature data could be used to forecast grain yield losses. In conclusion, farmers can have a low-cost, effective technique for making water management decisions in common bean.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.