Abstract

To optimize growth and management, precision agriculture relies on a deep understanding of agricultural dynamics, particularly crop water status analysis. Leveraging unmanned aerial vehicles, we can efficiently acquire high-resolution spatiotemporal samples by utilizing remote sensors. However, non-linear relationships among data features, localized within specific subgroups, frequently emerge in agricultural data. Interpreting these complex patterns requires sophisticated analysis due to the presence of noise, high variability, and non-stationarity behavior in the collected samples. Here, we introduce Local Biplot, a methodological framework tailored for discerning meaningful data patterns in non-stationary contexts for precision agriculture. Local Biplot relies on the well-known uniform manifold approximation and projection method, such as UMAP, and local affine transformations to codify non-stationary and non-linear data patterns while maintaining interpretability. This lets us find important clusters for transformation and projection within a single global axis pair. Hence, our framework encompasses variable and observational contributions within individual clusters. At the same time, we provide a relevance analysis strategy to help explain why those clusters exist, facilitating the understanding of data dynamics while favoring interpretability. We demonstrated our method’s capabilities through experiments on both synthetic and real-world datasets, covering scenarios involving grass and rice crops. Moreover, we use random forest and linear regression models to predict water status variables from our Local Biplot-based feature ranking and clusters. Our findings revealed enhanced clustering and prediction capability while emphasizing the importance of input features in precision agriculture. As a result, Local Biplot is a useful tool to visualize, analyze, and compare the intricate underlying patterns and internal structures of complex agricultural datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.