Abstract

The information on spatial distribution pattern and area of different crops is particularly useful for monitoring and managing the sustainability of agricultural resources. However, there are still challenges in timely mapping of crop types and planting areas to support production during the present growing season. Here, we proposed to use time-series Sentinel-2 imagery and a deep learning method for major crop mapping (wheat, maize, sunflower, and squash) in the agricultural production areas in the Hetao Irrigation District (HID), Inner Mongolia Autonomous Region, China. A feature selection method that combines the global separability index and feature recursive elimination was proposed to optimize the band features of Sentinel-2 imagery. The Random Forest, Extreme Gradient Boosting, U-Net and deeplabv3+ algorithms were then used for image classification with all spectral bands and the selected band features, respectively. The selected bands and best method were used to determine the key time window for the early identification of four major crops. Integrate all image datasets in the early window period, and build mapping models suitable for images at different times in the window period by combining the selected bands and best method. The results showed that the proposed feature selection method effectively removed redundant features and improved the classification efficiency. The U-Net algorithm was more suitable for the classification of major crops in HID with a higher accuracy whether using all band features or the selected features. The key periods for early recognition of wheat, maize, sunflower, and squash in HID were mid-May, late June, early July, and late June, respectively. The constructed models for crop type mapping in the early period were tested in 2020 and 2021 in the HID, and the F1-score, the mean intersection-over-union and overall accuracy were 86.71 %, 84.66 %, and 98.89 %, respectively. The proposed feature selection method, U-Net classification algorithm, and screening of the early mapping window period in this study provide an efficient, accurate and timely crop mapping tool in HID. Future research can further verify the applicability of the early identification time window proposed in this study to support other agricultural management activities in the areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.