Abstract
Crop pests seriously affect the yield and quality of crop. To timely and accurately control crop pests is particularly crucial for crop security, quality of life and a stable agricultural economy. Crop pest detection in field is an essential step to control the pests. The existing convolutional neural network (CNN) based pest detection methods are not satisfactory for small pest recognition and detection in field because the pests are various with different colors, shapes and poses. A three-scale CNN with attention (TSCNNA) model is constructed for crop pest detection by adding the channel attention and spatial mechanisms are introduced into CNN. TSCNNA can improve the interest of CNN for pest detection with different sizes under complicated background, and enlarge the receptive field of CNN, so as to improve the accuracy of pest detection. Experiments are carried out on the image set of common crop pests, and the precision is 93.16%, which is 5.1% and 3.7% higher than ICNN and VGG16, respectively. The results show that the proposed method can achieve both high speed and high accuracy of crop pest detection. This proposed method has certain practical significance of real-time crop pest control in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.