Abstract

The effect of nitrogen (N) on crop growth and productivity is mediated through effects on both light interception (green crop area) and radiation use efficiency (RUE). The effects of N nutrition on these factors were studied using data on green area index (GAI), above-ground dry matter and N uptake from growth analysis measurements in winter wheat from a number of experiments in Denmark with different application rates of N. Only measurements taken prior to anthesis were used in the statistical analyses. The N uptake was found to be proportional to GAI, and to have an additional curvilinear response to dry matter implying decreasing N concentration with increasing dry matter. This supports the hypothesis that nitrogen is associated with both the green surfaces of the crop canopy and with the dry matter component. A model of GAI expansion is presented incorporating three limiting factors: an exponential increase in GAI in thermal time, a minimum leaf area ratio, and a minimum ratio of GAI to N content in above-ground dry matter. This simple function has potential to be used as a tool for targeting timing and rates of N fertilisation in relation to a desired development of GAI. Such N application strategies should also consider the nitrogen nutrition index (NNI), which was defined based on the relationship between N uptake and both GAI and dry matter. The response of RUE to NNI showed a curvilinear response with a tendency for saturation at high NNI. The design of N application strategies should therefore ensure that low NNI is avoided during the most productive periods in the growing season.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call