Abstract
In the past decades, crop growth modeling and yield forecasting have attracted increasing attention in both scientific researches and agricultural practices. Many scientific studies have been carried out to improve the capabilities of crop growth modeling and yield forecasting by using various data sources and methods like statistical models, crop growth simulation models, and remote sensing. In this chapter, four categories of crop growth models were reviewed. Firstly, the traditional crop modeling and forecasting methods were introduced: statistical modeling and crop growth models. Then remote sensing models mainly based on spectral indices and quantitative products were introduced. The quality of remote sensing data is critical for crop modeling and yield forecasting. Finally, the widely used data assimilation of crops was described. More research is necessary for the full use of the value of remote sensing and crop growth model in crop growth monitoring and yield forecasting at a regional scale.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.