Abstract
Crop disease leaf image segmentation is a key step in crop disease recognition. In the paper, a segmentation method of crop disease leaf image is proposed to segment leaf image with non-uniform illumination based on maximum entropy and genetic algorithm (GA). The information entropy is regarded as the fitness function of GA, the maximum entropy as convergence criterion of GA. After genetic operation, the optimal threshold is obtained to segment the image of disease leaf. The experimental results of the maize disease leaf image show that the proposed method can select the threshold automatically and efficiently, and has an advantage over the other three algorithms, and also can reserve the main spot features of the original disease leaf image.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.