Abstract
Agricultural communities in the semiarid regions of the world are constantly being affected by water scarcity, increased regulations restricting water use, strong competition for irrigation water with the urban sector, and severe drought periods. Conversely, the consumer demand for high-quality and nutritious foods is increasing rapidly. A 2-year field study evaluated growth, yield, and bulb quality in response to precision planting density and deficit irrigation of onion (Allium cepa L.) in southwest Texas. Seeds of short-day sweet onion cv. Texas Grano 1015Y were planted in the field on 11 Nov. 2007 and 30 Oct. 2008 at two planting densities (PDs), 397,000 (standard) and 484,000 (high) seeds/ha. Three irrigation rates using growth stage-specific crop coefficients and subsurface drip were imposed after plants were fully established, 100%, 75%, and 50% crop evapotranspiration rates (ETc). Total rainfall plus irrigation received for each irrigation rate were 594, 501, and 413 mm in 2008 and 662, 574, and 486 mm in 2009. In both seasons, there were consistent trends in growth, yield, and quality parameters. Leaf fresh weight was unaffected by PD but was reduced by deficit irrigation at 50% ETc. Although increasing planting density reduced the average bulb size by 12%, it increased the number of marketable bulbs by 21% to 33% and marketable yield by 7% to 14%. In contrast, deficit irrigation showed a trend to reduce both the number of bulbs and bulb size with yield reductions of 8% to 13% at 75% ETc and 19% to 27% at 50% ETc. Neither planting density nor deficit irrigation rate had a significant effect on soluble solids content, pungency, or quercetin contents. These results suggest that growers of short-day onions in semiarid regions could adjust PDs to target high-value bulb sizes. Implementing water-conserving practices (deficit irrigation at 75% ETc rate) would result in a decrease of high-value bulb grades and modest losses in yield but not flavor or nutritional components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.