Abstract

In this work a classification of the main irrigated crops of the Piave river basin and an estimation of crop water requirements during the growing season are presented. The work is divided into two parts. The first includes recognition, mapping and quantification of the main irrigated crops for thematic map production and a database creation. MIVIS hyperspectral airborne data, Landsat-TM/ETM+ multispectral satellite data and ground truth data were used for crop classification. A specific method of knowledge-based image classification was designed and used. The proposed method was compared with other per point conventional classification methods. In the second part the crop water need estimation is discussed. Ground-climatological data of the study area ground-climatological stations were used. The water balance equation parameters were estimated on a ten-days basis. A spatial interpolation method was used to propagate these parameters at pixel spatial resolution to study area. Soil water deficit map for irrigation was produced and a flow rate estimation was performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.