Abstract

We examined 1990-1996 crop and soil N data for no-tillage (NT), minimum tillage (MT) and conventional tillage (CT) systems from four long-term tillage studies in semiarid regions of Saskatchewan for evidence that the N status was affected by tillage system. On a silt loam and clay soil in the Brown soil zone, spring what (Triticum aestivum L.) grain yield and protein concentration were lower for NT compared with tilled (CT or MT) systems for a fallow-wheat (F-WM) rotation. Grain protein concentration for continuous wheat (Cont W) was also lower for NT than for MT. For a sandy loam soil in the Brown soil zone, durum (Triticum durum L.) grain protein concentration was similar for MT and NT for both Cont W and F-W, but NT had higher grain yield than MT (P < 0.05 for F-W only). For a loam soil in the Dark Brown soil zone, wheat grain yield for NT was increased by about 7% for fallow-oilseed-wheat (F-O-W) and wheat-oilseed-wheat (W-O-W) rotations. The higher grain yields for NT reduced grain protein concentration by dilution effect as indicated by similar grain N yield. However, at this site, about 23 kg ha-1 more fertilizer N was required for NT than for CT. Elimination of tillage increased total organic N in the upper 7.5 cm of soil and N in surface residues. Our results suggest that a contributing factor to decreased availability of soil N in medium- and fine-textured soils under NT was a slower rate of net N mineralization from organic matter. Soil nitrates to 2.4 m depth did not indicate that nitrate leaching was affected by tillage system. Current fertilizer N recommendations developed for tilled systems may be inadequate for optimum production of wheat with acceptable grain protein under NT is semiarid regions of Saskatchewan. Key words: Tillage intensity, N availability, soil N fractions, N mineralization, crop residue decomposition, grain protein

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.