Abstract
Clusters of MHCI, ICAM-1, CD44, CD59, IL-2R, and IL-15R molecules have been studied on the surface of CD4(+) T-cells from peripheral blood and lymph nodes of patients in Crohn's disease and healthy individuals as controls by using a dual-laser flow cytometric fluorescence resonance energy transfer (FRET) technique and fluorescently stained Fabs. When cells from patients in Crohn's disease are compared to those of controls, the surface expression level for the MHCI reduced by ∼45%, for CD44 enhanced by ∼100%, and for IL-2Rα, IL-15Rα, and common γ(c) enhanced by ∼50%, ∼70%, and ∼130%, respectively. Efficiencies of FRET monitoring homoassociation for the MHCI and CD44 reduced, that for IL-2Rα enhanced. While efficiencies of FRET monitoring the association of γ(c) and ICAM-1 with the MHCI reduced, those monitoring association of IL-2/15Rα, CD44, and CD59 with MHCI enhanced. Efficiencies of FRET measured between the MHCI and IL-2Rα, IL-15Rα differently enhanced to the advantage of IL-15Rα, the one measured between γ(c) and IL-2Rα reduced, suggesting modulations in the strength of interaction of MHCI with IL-2R, IL-15R, and γ(c). The increases in density of surface bound cTx and in the associations of the receptors with the G(M1)-ganglioside lipid molecules suggest stronger lipid raft interactions of the receptors. The observed alterations of MHC-rafts in Crohn's disease--summarized in models of receptor patterns of diseased and control cells--may have functional consequences regarding signaling by the raft components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.