Abstract

Two MYB genes have been identified which regulate apocarotenoid metabolism in Crocus sativus. Apocarotenoids like crocin, picrocrocin and safranal are restricted to genus Crocus and are synthesized by oxidative cleavage of zeaxanthin followed by glycosylation reactions. In Crocus sativus, these apocarotenoids are synthesized in stigma part of the flower in developmentally regulated manner. Most of the genes of apocarotenoid pathway are known, however, the mechanism that regulates its tissue and stage specific biosynthesis remains elusive. MYB family was identified as the largest transcription factor family from Crocus transciptome which indicated its possible role in apocarotenoid regulation besides regulating other metabolic pathways. Towards this, we started with identification of 150 MYB genes from Crocus transcriptome databases. The phylogenetic analysis of Crocus MYB genes divided them into 27 clusters. Domain analysis resulted in identification of four groups of MYBs depending upon the number of R repeats present. Expression profiling indicated that 12 MYBs are upregulated in stigma out of which expression of four genes CstMYB1, CstMYB14, CstMYB16 and CstMYB1R2 correlated with crocin accumulation. Transient overexpression of two nuclear localized MYB genes (CstMYB1 and CstMYB1R2) in Crocus confirmed their role in regulating carotenoid metabolism. Yeast-one-hybrid confirmed that CstMYB1 binds to carotenoid cleavage dioxygenase 2 (CCD2) promoter while CstMYB1R2 binds to phytoene synthase (PSY) and CCD2 promoters. Overall, our study established that CstMYB1 and CstMYB1R2 regulate apocarotenoid biosynthesis by directly binding to promoters of pathway genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call