Abstract

In proliferative vitreoretinopathy (PVR), the proliferation and migration of retinal pigment epithelial (RPE) cells are important to pathogenesis. Platelet-derived growth factor (PDGF) is an important factor in the underlying mechanism. Several studies have shown that PDGF induced the proliferation and migration effects on RPE cells in PVR. Crocetin—anantioxidant carotenoid that is abundant in saffron—has been shown to suppress the migration and proliferation of many cell types, but studies of the effects on RPE cell migration and proliferation are incomplete. Therefore, we investigated the inhibitory effect of crocetin on the proliferation and migration of ARPE-19 cells induced by PDGF-BB, an isoform of PDGF. The proliferation of cells was assessed by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2′-deoxyuridine (EdU) assays. The apoptosis of cells was assessed by flow cytometric analysis. The migration of RPE cells was detected by a Transwell migration assay and an in vitro scratch assay. The levels of main regulatory proteins for apoptosis and the PDGF-BB-induced signaling pathway were determined by western blot analysis. The proliferation and migration of ARPE-19 cells treated with crocetin (100–400 μM) and PDGF-BB (20 ng/ml) were significantly inhibited in a concentration- and time-dependent manner. Crocetin exhibited potent inducing effects on the apoptosis of PDGF-BB-induced ARPE-19 cells via the modulation of Bcl-2 family regulators in a concentration-dependent manner. The inhibitory effects of crocetin on PDGF-BB-induced platelet-derived growth factor receptor β (PDGFRβ) and the underlying pathways of PI3K/Akt and ERK, p38, JNK activation were identified. The results showed that crocetin is an effective inhibitor of PDGF-BB-induced proliferation and migration of ARPE-19 cell through the downregulation of regulatory signaling pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.